Diffusion differentiable resampling

Zheng Zhao (Linköping University)

Wed Feb 18, 12:15-13:00 (6 weeks from now)
Lecture held in MVL14.

Abstract: This work is concerned with differentiable resampling in the context of sequential Monte Carlo (e.g., particle filtering). We propose a new informative resampling method that is instantly pathwise differentiable, based on an ensemble score diffusion model. We prove that our diffusion resampling method provides a consistent estimate to the resampling distribution, and we show by experiments that it outperforms the state-of-the-art differentiable resampling methods when used for stochastic filtering and parameter estimation. Implementations are available online at github.com/zgbkdlm/diffres

machine learningprobabilitystatistics theory

Audience: researchers in the discipline

( paper )


Gothenburg statistics seminar

Series comments: Gothenburg statistics seminar is open to the interested public, everybody is welcome. It usually takes place in MVL14 (http://maps.chalmers.se/#05137ad7-4d34-45e2-9d14-7f970517e2b60, see specific talk). Speakers are asked to prepare material for 35 minutes excluding questions from the audience.

Organizers: Akash Sharma*, Helga Kristín Ólafsdóttir*
*contact for this listing

Export talk to